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Abstract

We will show a constructive (or an approximate) version of the Gale-Nikaido lemma,
which is the basis for the proof of the existence of an approximate equilibrium in a
competitive economy, by Sperner’s lemma. We also show that a constructive ver-
sion of the Gale-Nikaido lemma leads to Sperner’s lemma. We follow the Bishop
style constructive mathematics according to [1], [2] and [3].
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1. Introduction

It is often said that Brouwer’s fixed point theorem can not be constructively proved.

[6] provided a constructive proof of Brouwer’s fixed point theorem. But
it is not constructive from the view point of constructive mathematics a la
Bishop. It is sufficient to say that one dimensional case of Brouwer’s fixed
point theorem, that is, the intermediate value theorem is non-constructive.
See [2] or [4]. Brouwer’s fixed point theorem can be constructively, in the
sense of constructive mathematics a la Bishop, proved only approximately.
The existence of an exact fixed point of a function which satisfies some
property of local non-constancy may be constructively proved.

1This research was partially supported by the Ministry of Education, Science, Sports and Culture of
Japan, Grant-in-Aid for Scientific Research (C), 20530165, and the Special Costs for Graduate Schools
of the Special Expenses for Hitech Promotion by the Ministry of Education, Science, Sports and Culture
of Japan in 2011.
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Thus, Kakutani’s fixed point theorem for multi-functions (multi-valued functions or
correspondences) with closed graph and the existence of an equilibrium in a competitive
economy with multi-valued demand and supply functions also can not be constructively
proved. On the other hand, however, Sperner’s lemma which is used to prove Brouwer’s
theorem can be constructively proved. Some authors have presented a constructive
(or an approximate) version of Brouwer’s fixed point theorem using Sperner’s lemma.
See [4] and [9]. Thus, Brouwer’s fixed point theorem can be constructively proved in
its constructive version. It seems that we can also constructively prove a constructive
version of Kakutani’s fixed point theorem, and using this theorem we can prove the
existence of an approximate equilibrium in a competitive economy with multi-valued
demand and supply functions.

Then, can we prove the existence of an approximate equilibrium in a com-
petitive economy directly by Sperner’s lemma?

We present such a proof. We will show an approximate version of the Gale-Nikaido
lemma ([5] and [7]), which is the basis for the proof of the existence of an approximate
equilibrium in a competitive economy with multi-valued demand and supply functions,
by Sperner’s lemma, and we also show that an approximate version of the Gale-Nikaido
lemma leads to Sperner’s lemma.

The Gale-Nikaido lemma states the following result. Let �n be an n-dimensional
simplex and Z be a totally bounded and complete, that is, compact and convex set in
n + 1-dimensional Euclidian space with inhabited (nonempty) interior. Suppose that a
multi-function F from �n to the set of inhabited subsets of Z satisfies some conditions
including the Weak Walras Law and the property of closed graph. Then, for some
p∗ ∈ �n there exists z∗ ∈ Z which satisfies

z∗ ∈ F(p∗), and z∗ ≤ 0.

We will show that under similar conditions the following result holds.

Let ε > 0. For some p∗ ∈ �n there exists z∗ which satisfies

|F(p∗) − z∗| < ε, and z∗ < εe.

e is a vector whose each component is 1. About the closed graph property of multi-
functions we consider its uniform version, and call such a multi-function a multi-function
with uniformly closed graph, or say that a multi-function uniformly has a closed graph.

In the next section we prove Sperner’s lemma. This proof is a standard constructive
proof. In Section 3 we prove an approximate version of the Gale-Nikaido lemma by
Sperner’s lemma. In Section 4 we will show that an approximate version of the Gale-
Nikaido lemma leads to Sperner’s lemma. We follow the Bishop style constructive
mathematics according to [1], [2] and [3].
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Figure 1: Example of graph

2. Sperner’s lemma

To prove Sperner’s lemma we use the following simple result in graph theory, Hand-
shaking lemma. A graph refers to a collection of vertices and a collection of edges that
connect pairs of vertices. Each graph may be undirected or directed. Figure 1 is an
example of an undirected graph. The degree of a vertex of a graph is defined to be the
number of edges incident to the vertex, with loops counted twice. Each vertex has odd
degree or even degree. Let v denote a vertex and V denote the set of all vertices.

Lemma 2.1. [Handshaking lemma] Every undirected graph contains an even number
of vertices of odd degree. That is, the number of vertices that have an odd number of
incident edges must be even.

It is a simple lemma. But for completeness of arguments we provide a proof.

Proof. Prove this lemma by double counting. Let d(v) be the degree of vertex v. The
number of vertex-edge incidences in the graph may be counted in two different ways:
by summing the degrees of the vertices, or by counting two incidences for every edge.
Therefore ∑

v∈V

d(v) = 2e,

where e is the number of edges in the graph. The sum of the degrees of the vertices is
therefore an even number. It could happen if and only if an even number of the vertices
had odd degree. �

Let �n denote an n-dimensional simplex. n is a positive integer at least 2. For
example, a 2-dimensional simplex is a triangle. Let partition or triangulate the simplex.
Figure 2 is an example of partition (triangulation) of a 2-dimensional simplex. In a
2-dimensional case we divide each side of �n in m equal segments, and draw the lines
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parallel to the sides of �n. Then, the 2-dimensional simplex is partitioned into m2

triangles. We consider partition of �n inductively for cases of higher dimension. In a
3 dimensional case each face of �n is a 2-dimensional simplex, and so it is partitioned
into m2 triangles in the way above mentioned, and draw the planes parallel to the faces
of �n. Then, the 3-dimensional simplex is partitioned into m3 trigonal pyramids. And
similarly for cases of higher dimension.

Let K denote the set of small n-dimensional simplices of �n constructed by partition.
The vertices of these small simplices of K are labeled with the numbers 0, 1, 2, . . . , n

subject to the following rules.

1. The vertices of�n are respectively labeled with 0 ton. We label a point (1, 0, . . . , 0)

with 0, a point (0, 1, 0, . . . , 0) with 1, a point (0, 0, 1 . . . , 0) with 2, . . . , a point
(0, . . . , 0, 1) with n. That is, a vertex whose k-th coordinate (k = 0, 1, . . . , n) is
1 and all other coordinates are 0 is labeled with k.

2. If a vertex of simplices of K is contained in an n − 1-dimensional face of �n,
then that vertex is labeled with some number which is the same as the number of
a vertex of that face.

3. If a vertex of simplices of K is contained in an n − 2-dimensional face of �n,
then that vertex is labeled with some number which is the same as the number of
a vertex of that face. And similarly for cases of lower dimension.

4. A vertex contained in inside of �n is labeled with arbitrary number among 0, 1,
. . . , n.

A small simplex of K which is labeled with the numbers 0, 1, . . . , n is called a fully
labeled simplex. Now let us prove Sperner’s lemma.

Lemma 2.2. [Sperner’s lemma] If we label the vertices of simplices of K following
above rules (1) ∼ (4), then there are an odd number of fully labeled simplices. Thus,
there exists at least one fully labeled simplex.
Proof. See Appendix 5. �

Since n and partition of �n are finite, the number of small simplices constructed by
partition is also finite. Thus, we can constructively find a fully labeled n-dimensional
simplex of K through finite steps.

3. Approximate version of the Gale-Nikaido lemma

In this section we derive an approximate version of the Gale-Nikaido lemma which is
the basis for the proof of the existence of an approximate equilibrium in a competitive
economy with multi-valued demand and supply functions. The contents of (the classical
version of) the Gale-Nikaido lemma are as follows.
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Figure 2: Partition and labeling of 2-dimensional simplex

Gale-Nikaido lemma

Let p = (p0, p1, . . . , pn) and

�n =
{

p|pi ≥ 0, i = 0, 1, . . . , n,

n∑
i=0

pi = 1

}
,

and let Z be a compact and convex set with inhabited interior in n + 1-dimensional
Euclidian space. Assume that a multi-function F(p) from �n to the set of inhabited
subsets of Z satisfies the following conditions.

1. F(p) is a compact and convex set of Z for each p .

2. F has a closed graph.

3. (Weak Walras Law) For any p ∈ �n and z ∈ Z, pz ≤ 0 holds.

Then, for some p∗ ∈ �n there exists z∗ which satisfies

z∗ ∈ F(p∗), z∗ ≤ 0.

A graph of a multi-function F from �n to the set of inhabited subsets of Z is

G(F) = ∪p∈�n{p} × F(p).

If G(F) is a closed set, we say that F has a closed graph. It implies the following fact.
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Consider sequences (pn)n≥1 and (qn)n≥1 such that qn ∈ F(pn). If pn −→ p
and qn −→ q, then q ∈ F(p).

According to [3] this means

If for each neighborhood U(p, ε) of p there exists n0 such that pn ∈ U(p, ε)

when n ≥ n0, then for the union of neighborhoods ∪q∈F(p)V (q, ε) of points
in F(p) there exists n′

0 such that qn ∈ ∪q∈F(p)V (q, ε) when n ≥ n′
0.

Further we consider a uniform version of this property for multi-functions, and call
such a multi-function a multi-function with uniformly closed graph, or say that a multi-
function uniformly has a closed graph. It means that n0 and n′

0 depend on only ε not on
p.

Let z = (z0, z1, . . . , zn), and consider the following function.

ϕ(p, z) = (ϕ0, ϕ1, . . . , ϕn), ϕi(p, z) = pi + max(zi, 0)

1 + ∑n
j=0 max(zj , 0)

.

Since we have ϕi ≥ 0,
n∑

i=0

ϕi = 1, and ϕi is a uniformly continuous function of (p, z),

ϕ(p, z) is a uniformly continuous function from �n × Z to �n. And because F(p) is
convex, ϕ(p, z) × F(p) is also a convex set of �n × Z.

Next we define the following multi-function,

g(p, z) = ϕ(p, z) × F(p). (3.1)

g(p, z) is a multi-function from �n×Z to the set of inhabited subsets of �n×Z. ϕ(p, z)
is a single-valued function, and it is a special case of multi-function. �n itself is a subset
of the set of inhabited subsets of �n, and so we can consider that the set of inhabited
subsets of �n is the range of ϕ(p, z). Thus, g is considered to be a multi-function
from �n × Z to the set of inhabited subsets of �n × Z. Since ϕ(p, z) is a uniformly
continuous function, and F(p) is a multi-function with uniformly closed graph, g(p, z)
also uniformly has a closed graph. Since Z is homeomorphic to an n + 1-dimensional
simplex, �n × Z is homeomorphic to an 2n + 1-dimensional simplex.

In contrast to the classical version of the Gale-Nikaido lemma, we call the following
result an approximate version of the Gale-Nikaido lemma.

Theorem 3.1. [Approximate version of the Gale-Nikaido lemma] Assume the same
conditions, 1, 2 and 3, replacing 2 with that F uniformly has a closed graph. Let ε > 0.
For some p∗ ∈ �n there exists z∗ which satisfies

|F(p∗) − z∗| < ε, and z∗ < εe.

e is a vector whose each component is 1. p∗ and z∗ depend on ε.

Proof. Let consider a multi-function with uniformly closed graph � from �2n+1 to the
set of its inhabited subsets.
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1. We show that we can partition �2n+1 so that the conditions for Sperner’s lemma are
satisfied. We partition �2n+1 according to the method in the proof of Sperner’s
lemma, and label the vertices of simplices constructed by partition of �2n+1.
Further suppose that we partition �2n+1 sufficiently fine so that the distance be-
tween any pair of vertices of small simplices constructed by partition is sufficiently
small. Let K be the set of small simplices constructed by partition of �2n+1, and
q = (q0, q1, . . . , q2n+1) and q′ = (q ′

0, q
′
1, . . . , q

′
2n+1) be vertices of a simplex of

K . Denote the value of � at q by �(q). Let θ(q) be a point in �(q), and denote
the i-th component of θ(q) by θi . Since � uniformly has a closed graph, with
sufficiently fine partition there exists δ such that if |q − q′| < δ, then for ε > 0
|θ(q) − θ(q′)| < ε for any θ(q) ∈ �(q) and some θ(q′) ∈ �(q′), or for some
θ(q) ∈ �(q) and any θ(q′) ∈ �(q′)2.

Let q0 be a vertex of a small 2n + 1-dimensional simplex of K which is labeled
with 0 by the labelling method which will be explained below. We take a point
θ(q) ∈ �(q) for all other vertices of this simplex so that |θ(q0) − θ(q)| < ε is
satisfied3.

It is important how to label the vertices contained in the faces of �2n+1. We label
a vertex q according to the following rule,

If qk > θk or qk + τ > θk, we label q with k,

where τ is a positive number. If there are multiple k’s which satisfy this condition,
we label q conveniently for the conditions for Sperner’s lemma to be satisfied. We
do not randomly label the vertices.

For example, let q be a point contained in an 2n-dimensional face of �2n+1 such
that qi = 0 for one i among 0, 1, 2, . . . , 2n + 1 (the i-th component of its co-
ordinates is 0). With τ > 0, we have θi > 0 or θi < τ 4. When θi > 0, from
2n+1∑
j=0

qj = 1,
2n+1∑
j=0

θj = 1 and qi = 0,

2n+1∑
j=0,j 	=i

qj >

2n+1∑
j=0,j 	=i

θ j .

2Consider a sequence (qm)m≥1 converging to q′ and a sequence (θ(qm))m≥1 such that θ(qm) ∈ �(qm)

for each m, then closedness of the graph of � implies that (θ(qm))m≥1 converges to a point in �(q′).
Similarly, consider a sequence (q′

m)m≥1 converging to q and a sequence (θ(q′
m))m≥1 such that θ(q′

m) ∈
�(q′

m) for each m, then closedness of the graph of � implies that (θ(q′
m))m≥1 converges to a point in

�(q).
3There may exist a case such that for any δ > 0 we can not take a point θ(q) for some vertex q so that

|θ(q0) − θ(q)| < ε is satisfied. See Note at the end of this proof about such a case.
4In constructive mathematics for any real number x we can not prove that x ≥ 0 or x < 0, that x > 0

or x = 0 or x < 0. But for any distinct real numbers x, y and z such that x > z we can prove that x > y

or y > z.
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Then, for at least one j (denote it by k) we have qk > θk, and we label q with
k, where k is one of the numbers which satisfy qk > θk. Since θi > qi , i does

not satisfy this condition. Assume θi < τ . qi = 0 implies
2n+1∑

j=0,j 	=i

qj = 1. Since

2n+1∑
j=0,j 	=i

θ j ≤ 1

2n+1∑
j=0,j 	=i

qj ≥
2n+1∑

j=0,j 	=i

θ j .

Then, for a positive number τ we have

2n+1∑
j=0,j 	=i

(qj + τ) >

2n+1∑
j=0,j 	=i

θ j .

There is at least one j (	= i) which satisfies qj + τ > θj . Denote it by k, and
we label q with k. k is one of the numbers other than i such that qk + τ > θk is
satisfied. i itself satisfies this condition (qi +τ > θi). But, since there is a number
other than i which satisfies this condition, we can select a number other than i.
We have proved that we can label the vertices contained in an 2n-dimensional face
of �2n+1 such that qi = 0 for one i among 0, 1, 2, . . . , 2n + 1 with the numbers
other than i. By similar procedures we can show that we can label the vertices
contained in an 2n − 1-dimensional face of �2n+1 such that qi = 0 for two i’s
among 0, 1, 2, . . . , 2n + 1 with the numbers other than those i’s, and so on.

Consider the case where qi = qi+1 = 0. We can see that when θi > 0
or θi+1 > 0,

2n+1∑
j=0,j 	=i,i+1

qj >

2n+1∑
j=0,j 	=i,i+1

θj .

Then, for at least one j (denote it by k) we have qk > θk, and we label
q with k. On the other hand, when θi < τ and θi+1 < τ , we have

2n+1∑
j=0,j 	=i,i+1

qj ≥
2n+1∑

j=0,j 	=i,i+1

θj .

Then, for a positive number τ

2n+1∑
j=0,j 	=i,i+1

(qj + τ) >

2n+1∑
j=0,j 	=i,i+1

θj .
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Thus, there is at least one j (	= i, i + 1) which satisfies qj + τ > θj .
Denote it by k, and we label q with k.
Next consider the case where qi = 0 for all i other than 2n + 1. If
for some i θ i > 0, then we have q2n+1 > θ2n+1, and label q with
2n+ 1. On the other hand, if θj < τ for all j 	= 2n+ 1, then we obtain
q2n+1 ≥ θ2n+1. It implies q2n+1 + τ > θ2n+1. Thus, we can label q
with 2n + 1.

Therefore, the conditions for Sperner’s lemma are satisfied, and there exists an
odd number of fully labeled simplices in K .

2. Let q0, q1, . . . and q2n+1 be the vertices of a fully labeled simplex. We name these
vertices so that q0, q1, . . . , q2n+1 are labeled, respectively, with 0, 1, . . . , 2n + 1.
The values of � at these vertices are �(q0), �(q1), . . . and �(q2n+1). Take points
θ(q0), θ(q1), . . . and θ(q2n+1) such that θ(q0) ∈ �(q0), θ(q1) ∈ �(q1), . . . and
θ(q2n+1) ∈ �(q2n+1). The i-th components of q0 and θ(q0) are denoted by q0

i

and θ(q0)i , and so on.

By our assumption in (1) of this proof when the distance between q0 and q1

(|q0−q1|) is smaller than δ, the distance between θ(q0) and θ(q1) (|θ(q0)−θ(q1)|)
is smaller than ε. We can make δ satisfying δ < ε5. Suppose τ > 0. About q0,
from the labeling rules we have q0

0 +τ > θ(q0)0. About q1, also from the labeling
rules we have q1

1+τ > θ(q1)1 which implies q1
1 > θ(q1)1−τ . |θ(q0)−θ(q1)| < ε

means θ(q1)1 > θ(q0)1 −ε. On the other hand, |q0 −q1| < δ means q0
1 > q1

1 −δ.
Thus, from

q0
1 > q1

1 − δ, q1
1 > θ(q1)1 − τ , θ(q1)1 > θ(q0)1 − ε

we obtain
q0

1 > θ(q0)1 − δ − ε − τ > θ(q0)1 − 2ε − τ

By similar arguments, for each i other than 0,

q0
i > θ(q0)i − 2ε − τ . (3.2)

For i = 0 we have q0
0 + τ > θ(q0)0. Then,

q0
0 > θ(q0)0 − τ (3.3)

Adding (3.2) and (3.3) side by side except for some i (denote it by k) other than 0,

2n+1∑
j=0,j 	=k

q0
j >

2n+1∑
j=0,j 	=k

θ(q0)j − 4nε − (2n + 1)τ .

5For example, for δ < 1 and ε < 1, if when |q0 − q1| < δ we have |θ(q0)− θ(q1)| < ε, then we have
|θ(q0) − θ(q1)| < ε also when |q0 − q1| < δε < ε.
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From
2n+1∑
j=0

q0
j = 1,

2n+1∑
j=0

θ(q0)j = 1 we have 1−q0
k > 1−θ(q0)k−4nε−(2n+1)τ ,

which is rewritten as

q0
k < θ(q0)k + 4nε + (2n + 1)τ .

Since (3.2) implies q0
k > θ(q0)k − 2ε − τ , we have

θ(q0)k − 2ε − τ < q0
k < θ(q0)k + 4nε + (2n + 1)τ .

Thus,
|q0

k − θ(q0)k| < 4nε + n(2n + 1)τ (3.4)

is derived. On the other hand, adding (3.2) from 1 to 2n + 1 yields

2n+1∑
j=1

q0
j >

2n+1∑
j=1

θ(q0)j − 2(2n + 1)ε − (2n + 1)τ .

From
2n+1∑
j=0

q0
j = 1,

2n+1∑
j=0

θ(q0)j = 1 we have

1 − q0
0 > 1 − θ(q0)0 − 2(2n + 1)ε − (2n + 1)τ . (3.5)

Then, from (3.3) and (3.5)

|q0
0 − θ(q0)0| < 2(2n + 1)ε + (2n + 1)τ . (3.6)

Since n is finite, redefining 2(2n + 1)ε + (2n + 1)τ as ε, (3.4) and (3.6) yield

|q0
i − θ(q0)i | < ε for all i. (3.7)

Appropriately selecting points θ(q0), θ(q1), . . . and θ(q2n+1), every point con-
tained in the fully labeled simplex of K can be made satisfy (3.7).

Let q be (p, z), and � be g in (3.1). Denote one of the points which satisfy (3.7)
by (p∗, z∗). Then, for each ε > 0

|ϕi − p∗
i | < ε for all i, (3.8)

and
|F(p∗) − z∗| < ε

hold. Let p∗ = (p∗
0, p

∗
1, . . . , p

∗
n), z∗ = (z∗

0, z
∗
1, . . . , z

∗
n). Then,∣∣∣∣∣ p∗

i + max(z∗
i , 0)

1 + ∑n
j=0 max(z∗

j , 0)
− p∗

i

∣∣∣∣∣ =
∣∣∣∣∣
max(z∗

i , 0) − p∗
i

∑n
j=0 max(z∗

j , 0)

1 + ∑n
j=0 max(z∗

j , 0)

∣∣∣∣∣ < ε.
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Figure 3: A multi-function in 1-dimensional case

Let
n∑

j=0

max(z∗
j , 0) = λ. We have

| max(z∗
i , 0) − λp∗

i | < (1 + λ)ε.

This means

−(1 + λ)ε + λp∗
i < max(z∗

i , 0) < (1 + λ)ε + λp∗
i . (3.9)

By
n∑

i=0

p∗
i = 1 there exists k which satisfies p∗

k > 0. If for some k satisfying

p∗
k > 0 we have z∗

k > 0, then the weak Walras Law is violated because pi can
not be negative, and p∗

kz
∗
k > 0 can not be canceled out. Thus, λ as well as ε

must be a positive number which may be arbitrarily small, and since p∗
i is finite,

(1 + λ)ε + λp∗
i is a real number which may be arbitrarily small. There exists a

number which is only slightly larger than (1+λ)ε+λp∗
i . Replace (1+λ)ε+λp∗

i

by such a number, and denote it by ε. Then, we obtain

max(z∗
i , 0) < ε. (3.10)

This holds for all i. Therefore,
z∗ < εe

is obtained.

Note

There may exist a case such that for any δ > 0 we can not take a point θ(q)

for some vertex q so that |θ(q0) − θ(q)| < ε is satisfied. An example in a 1-
dimensional case is a multi-function from [0, 1] to [0, 1] depicted in Figure 3.
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The coordinates of the points 0 and 1 are, respectively, (0, 1) and (1, 0). And
coordinates of other points in [0, 1] are similar. Even if |q0 − q1| < δ for any
δ > 0, |θ(q0) − θ(q1)| > 0. q0 and q1 are, respectively, numbered with 0 and 1.
In such a case we must consider further partition of a simplex [q0, q1] and take a
limit when δ → 0. At the limit of vertices of a fully labeled simplex q∗ there are
points θ1(q∗) ∈ F(q∗) and θ2(q∗) ∈ F(q∗) such that

q∗
0 > θ1(q∗)0 − τ and q∗

1 > θ2(q∗)1 − τ .

Since q∗
0 + q∗

1 = 1 and θ2(q∗)0 + θ2(q∗)1 = 1, the latter implies

q∗
0 < θ2(q∗)0 + τ .

Thus,
θ1(q∗)0 − τ < q∗

0 < θ2(q∗)0 + τ .

Define a point in F(q∗) by

θ∗(q∗) = αθ1(q∗) + (1 − α)θ2(q∗), 0 ≤ α ≤ 1.

By the convexity of F(q∗), θ∗(q∗) ∈ F(q∗). Let

α = θ2(q∗)0 + τ − q∗
0

[θ2(q∗)0 + τ − q∗
0] + [q∗

0 − θ1(q∗)0 + τ ] = θ2(q∗)0 + τ − q∗
0

θ2(q∗)0 − θ1(q∗)0 + 2τ
,

and

1 − α = q∗
0 − θ1(q∗)0 + τ

θ2(q∗)0 − θ1(q∗)0 + 2τ
.

Then,

θ∗(q∗)0 = θ1(q∗)0(τ − q∗
0) + θ2(q∗)0(τ + q∗

0)

θ2(q∗)0 − θ1(q∗)0 + 2τ
.

And so we have

q∗
0 − θ∗(q∗)0 = τ [2q∗

0 − θ1(q∗)0 − θ2(q∗)0]
θ2(q∗)0 − θ1(q∗)0 + 2τ

.

Since τ may be arbitrarily small, for any ε > 0 we obtain

|q∗
0 − θ∗(q∗)0| < ε.

Similarly
|q∗

1 − θ∗(q∗)1| < ε

is derived.

A case of higher dimension is similar.
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We have completed the proof of the approximate version of the Gale-Nikaido
lemma. �

If we interpret pi and zi be the price and excess demand of each good, and F(p) be
a multi-valued excess demand function, then this theorem implies the existence of an
approximate equilibrium of a competitive exchange economy with multi-valued excess
demand functions at which excess demand for each good is smaller than ε.

4. From the approximate version of Gale-Nikaido
lemma to Sperner’s lemma

In this section we will derive Sperner’s lemma from an approximate version of the Gale-
Nikaido lemma. Let partition an n-dimensional simplex �n. Denote the set of small
n-dimensional simplices of �n constructed by partition by K . Vertices of these small
simplices of K are labeled with the numbers 0, 1, 2, . . . , n similarly to the proof of
Sperner’s lemma. Denote vertices of an n-dimensional simplex of K by x0, x1, . . . , xn,
the j -th component of xi by xi

j , and the label of xi by l(xi). Let τ be a positive number

which is smaller than xi
l(xi)

for all xi , and define a function f (xi) as follows6;

f (xi) = (f0(x
i), f1(x

i), . . . , fn(x
i)),

and

fj (x
i) =

⎧⎪⎨
⎪⎩

xi
j − τ for j = l(xi),

xi
j + τ

n
for j 	= l(xi).

(4.1)

fj denotes the j -th component of f . From the labeling rules xi
l(xi)

> 0 for all xi , and

so τ > 0 is well defined. Since
n∑

j=0

fj (x
i) =

n∑
j=0

xi
j = 1, we have

f (xi) ∈ �n.

We extend f to all points in the simplex by convex combinations of its values on the
vertices of the simplex. Let y be a point in an n-dimensional simplex of K whose vertices
are x0, x1, . . . , xn. Then, y and f (y) are represented as follows;

y =
n∑

i=0

λix
i, and f (y) =

n∑
i=0

λif (xi), λi ≥ 0,

n∑
i=0

λi = 1.

6We refer to [10] about the definition of this function.
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Let us show that f is uniformly continuous. Let y and y′ be distinct points in the same
small n-dimensional simplex of K . They are represented as

y =
n∑

i=0

λix
i, y′ =

n∑
i=0

λ′
ix

i,

and so

y − y′ =
n∑

i=0

(λi − λ′
i)x

i and yj − y′
j =

n∑
i=0

(λi − λ′
i)x

i
j for each j.

Then, we have

f (y) − f (y′) =
n∑

i=0

(λi − λ′
i)f (xi)

and for each j

fj (y) − fj (y
′) =

n∑
i=0

(λi − λ′
i)x

i
j +

∑
i:j 	=l(i)

(λi − λ′
i)

τ

n
−

∑
i:j=l(i)

(λi − λ′
i)τ

= yj − y′
j +

∑
i:j 	=l(i)

(λi − λ′
i)

τ

n
−

∑
i:j=l(i)

(λi − λ′
i)τ

Since τ is finite, appropriately selecting λ′
i given λi for each i we can make |fj (y) −

fj (y
′)| sufficiently small corresponding to the value of |yj −y′

j | for each j , and so make
|f (y) − f (y′)| sufficiently small corresponding to the value of |y − y′|. Thus, f is
uniformly continuous.

Now, using f , we construct a function F(x) = z = {z0, z1, . . . , zn} such that

zi = fi(x) − xiµ(x), i = 0, 1, . . . , n. (4.2)

x ∈ �n and µ(x) is defined by

µ(x) =
∑n

i=0 xifi(x)∑n
i=0 x2

i

.

Each zi(x) is uniformly continuous, and satisfies the Weak Walras law as shown below.
Multiplying xi to (4.2) for each i, and adding them from 0 to n yields

n∑
i=0

xizi =
n∑

i=0

xifi(x) − µ(x)

n∑
i=0

x2
i =

n∑
i=0

xifi(x) −
∑n

i=0 xifi(x)∑n
i=0 x2

i

n∑
i=0

x2
i

=
n∑

i=0

xifi(x) −
n∑

i=0

xifi(x) = 0. (4.3)
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Now define the following function.

g(x, z) = ϕ(x, z) × F(x),

where

ϕ(x, z) = (ϕ0, ϕ1, . . . , ϕn), ϕi(x, z) = xi + max(zi, 0)

1 + ∑n
j=0 max(zj , 0)

.

g is a uniformly continuous function of (x, z), and it is a special case of a compact and
convex valued multi-function with uniformly closed graph. Therefore, it satisfies the
conditions for the approximate version of the Gale-Nikaido lemma. Then, there exist x∗
and z∗ such that

|F(x∗) − z∗| < ε, and z∗ < εe.

From max(zi, 0) < ε (see (3.10)) we have fi(x
∗) − x∗

i µ(x∗) < ε for all i with ε > 0.
Since it is impossible that zi < 0 for i satisfying x∗

i > 0 because of (4.3), we have
zi = fi(x

∗) − x∗
i µ(x∗) > −ε for such i. Also for i such that x∗

i < ε, we have
zi = fi(x

∗) − x∗
i µ(x∗) > −ε. Therefore,

−ε < fi(x
∗) − x∗

i µ(x∗) < ε (4.4)

is obtained. Adding this inequality side by side from 0 to n yields

−(n + 1)ε <

n∑
i=0

fi(x
∗) − µ(x∗)

n∑
i=0

x∗
i < (n + 1)ε.

From
n∑

i=0

fi(x
∗) =

n∑
i=0

x∗
i = 1 we obtain

1 − (n + 1)ε < µ(x∗) < 1 + (n + 1)ε. (4.5)

Further from (4.4) and (4.5) we get

x∗
i − (n + 1)εx∗

i − ε < fi(x
∗) < x∗

i + (n + 1)εx∗
i + ε.

Since n and x∗
i are finite, redefining (n+1)εx∗

i +ε as ε, we have −ε < fi(x
∗)−x∗

i < ε,
that is,

|fi(x
∗) − x∗

i | < ε

is derived. This relation holds for all i.
Let γ > 0 and x̃ be a point in V (x∗, γ ), where V (x∗, γ ) is a γ -neighborhood of x∗.

If γ is sufficiently small, uniform continuity of f means

|fi(x̃) − x̃i | < ε (4.6)
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for any ε > 0 and for all i. x̃i is the i-th component of x̃. Let �n∗
be a simplex of

K which contains x̃, and x0, x1, . . . , xn be the vertices of �n∗
. Then, x̃ and F(x̃) are

represented as

x̃ =
n∑

i=0

λix
i and f (x̃) =

n∑
i=0

λif (xi), λi ≥ 0,

n∑
i=0

λi = 1.

(4.1) implies that if only one xk among x0, x1, . . . , xn is labeled with i, we have

|fi(x̃) − x̃i | =
∣∣∣∣∣∣

n∑
j=0

λjx
j

i +
n∑

j=0,j 	=k

λj

τ

n
− λkτ − x̃i

∣∣∣∣∣∣ =
∣∣∣∣∣∣
⎛
⎝1

n

n∑
j=0,j 	=k

λj − λk

⎞
⎠ τ

∣∣∣∣∣∣ < ε.

x
j

i is the i-th component of xj . This means

1

n

n∑
j=0,j 	=k

λj − λk ≈ 0.

It is satisfied with λk ≈ 1

n + 1
for all k. On the other hand, if no xj is labeled with i, we

have

fi(x̃) =
n∑

j=0

λjx
j

i = x∗
i +

(
1 + 1

n

)
τ ,

and then (4.6) can not be satisfied. Thus, for each i one and only one xj must be labeled
with i. Therefore, �n∗

must be a fully labeled simplex. We have completed the proof
of Sperner’s lemma.

5. Concluding Remarks

In this paper we have presented a proof of the existence of an approximate equilibrium of
an competitive economy with multi-valued demand and supply functions by Sperner’s
lemma from the viewpoint of constructive mathematics. We are studying some related
problems such as the existence of an approximate Nash equilibrium in a finite strategic
game with multi-valued best responses, a constructive version of the Fan-Glicksberg
fixed point theorem for multi-functions in a locally convex space and its application to
a proof of the existence of an approximate Nash equilibrium in a strategic game with
continuous strategies and quasi-concave payoff functions.

Appendix

Proof of Sperner’s lemma

We prove this lemma by induction about the dimension of �n. When n = 0, we have
only one point with the number 0. It is the unique 0-dimensional simplex. Therefore
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Figure 4: Sperner’s lemma

the lemma is trivial. When n = 1, a partitioned 1-dimensional simplex is a segmented
line. The endpoints of the line are labeled distinctly, with 0 and 1. Hence in moving
from endpoint 0 to endpoint 1 the labeling must switch an odd number of times, that is,
an odd number of edges labeled with 0 an 1 may be located in this way.

Next consider the case of 2 dimension. Assume that we have partitioned a 2-
dimensional simplex (triangle) �n as explained above. Consider the face of �n labeled
with 0 and 17. It is the base of the triangle in Figure 4. Now we introduce a dual graph
that has its nodes in each small triangle of K plus one extra node outside the face of �n

labeled with 0 and 1 (putting a dot in each small triangle, and one dot outside �n). We
define edges of the graph that connect two nodes if they share a side labeled with 0 and
1. See Figure 4. White circles are nodes of the graph, and thick lines are its edges. Since
from the result of 1-dimensional case there are an odd number of faces of K labeled
with 0 and 1 contained in the face of �n labeled with 0 and 1, there are an odd number
of edges which connect the outside node and inside nodes. Thus, the outside node has
odd degree. Since by the Handshaking lemma there are an even number of nodes which
have odd degree, we have at least one node inside the triangle which has odd degree.
Each node of our graph except for the outside node is contained in one of small triangles

7We call edges of triangle �n faces to distinguish between them and edges of a dual graph which we
will consider later.
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of K . Therefore, if a small triangle of K has one face labeled with 0 and 1, the degree
of the node in that triangle is 1; if a small triangle of K has two such faces, the degree of
the node in that triangle is 2, and if a small triangle of K has no such face, the degree of
the node in that triangle is 0. Thus, if the degree of a node is odd, it must be 1, and then
the small triangle which contains this node is labeled with 0, 1 and 2 (fully labeled). In
Figure 4 triangles which contain one of the nodes A, B, C are fully labeled triangles.

Now assume that the theorem holds for dimensions up to n − 1. Assume that we
have partitioned an n-dimensional simplex �n. Consider the fully labeled face of �n

which is a fully labeled n − 1-dimensional simplex. Again we introduce a dual graph
that has its nodes in small n-dimensional simplices of K plus one extra node outside the
fully labeled face of �n (putting a dot in each small n-dimensional simplex, and one
dot outside �n). We define the edges of the graph that connect two nodes if they share
a face labeled with 0, 1, . . . , n − 1. Since from the result of n − 1-dimensional case
there are an odd number of fully labeled faces of small simplices of K contained in the
n − 1-dimensional fully labeled face of �n, there are an odd number of edges which
connect the outside node and inside nodes. Thus, the outside node has odd degree. Since,
by the Handshaking lemma there are an even number of nodes which have odd degree,
we have at least one node inside the simplex which has odd degree. Each node of our
graph except for the outside node is contained in one of small n-dimensional simplices
of K . Therefore, if a small simplex of K has one fully labeled face, the degree of the
node in that simplex is 1; if a small simplex of K has two such faces, the degree of the
node in that simplex is 2, and if a small simplex of K has no such face, the degree of the
node in that simplex is 0. Thus, if the degree of a node is odd, it must be 1, and then the
small simplex which contains this node is fully labeled.

If the number (label) of a vertex other than vertices labeled with 0, 1, . . . ,
n − 1 of an n-dimensional simplex which contains a fully labeled n − 1-
dimensional face is n, then this n-dimensional simplex has one such face,
and this simplex is a fully labeled n-dimensional simplex. On the other
hand, if the number of that vertex is other than n, then the n-dimensional
simplex has two such faces.

We have completed the proof of Sperner’s lemma.
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